
Responsive Design (With Unity)
Presented by Lovelle Cardoso

1



Different 
approaches 
to layout design

2

Fixed

Fluid

Adaptive

Responsive



Fixed Design

• Elements have fixed width

• Works well when:

• only deploying to 1 platform that is guaranteed to only 
have 1 screen size

• Causes problems when:

• porting to other devices with different screen sizes and 
aspect ratios

• Complications when porting a fixed design:

• Elements may be obscured, cut off, or overlap.

• Elements may be difficult to see, requiring awkward 
zooming and scrolling

• Elements may be difficult to click with fingers

520px 200px 200px

20px

960px



Fluid Design
• Elements have proportional width

• Built using percentage measurements 
instead of pixel measurements

• Works well when:
• deploying to platforms that all have similar 

screen sizes, aspect ratios, and orientation

• Causes problems when:
• porting to other devices with vastly different 

screen sizes, aspect ratios, or orientation

• Complications when porting a fluid 
design:

• Elements may be squished too much 
or stretched too far, resulting in 
an awkward or unusable layout

4

520px 200px 200px

20px

960px

90%

50% 20% 20%

5%

F
I
X
E
D

F
L
U
I
D

VS



5
A different design layout is created for each target platform​ One design layout is created with rules that allow it to adapt to 

each target platform



Adaptive Design

• A different design layout is created for each target platform

• Each layout is designed to be optimal for its specific target platform

• Works well when:

• Deploying to a reasonably small number of different platforms

• The variation of screen size within each platform type is small

• Causes problems when:

• Deploying to a large number of different platforms

• The variation of screen size within each platform is large

• Complications when porting an adaptive design:

• Mockup & spec bloat: (takes more time and effort to design and 

maintain a different layout for every platform)

6

Responsive Design

• One design layout is created with rules that allow 

it to adapt to each target platform

• Rules define "breakpoints" that determine when 

the layout should change to a more appropriate 

layout

• Designing a layout responsively allows a design to 

look correct, navigate easily, and function well 

across potentially any platform or screen size.

• It keeps mockup & spec bloat to a minimum since 

there should only be one design for all platforms, 

rather than a different design for each.



Designing 
Responsively

How to create 
responsive mockups

7



Step 1: Primary LayoutHow to create a responsive mockup?

• The primary layout is the one that is most 

appropriate for the application's most 

frequently used platform.

• The layout will generally fall into 2 

categories: horizontal or vertical

• When working on a mobile-first application, the 

primary layout is typically a vertical layout

• When working on a tv-first, desktop-first, laptop-

first, or tablet-first application, the primary layout is 

typically a horizontal layout

• NOTE: horizontal and vertical does NOT refer to the 

orientation of the screen, but rather the orientation 

of the elements within the screen.

• Create a high-fidelity mockup and a 

wireframe mockup for the primary layout

1



Step 2: Secondary LayoutHow to create a responsive mockup?

• The secondary layout is the opposite of the 
primary layout

• When working on a mobile-first application, the 
secondary layout is typically a horizontal layout

• When working on a tv-first, desktop-first, laptop-
first, or tablet-first application, the secondary 
layout is typically a vertical layout

• Create a wireframe mockup for the 
secondary layout

2



Example Mockups:

Primary High-Fidelity Primary Wireframe Secondary Wireframe

10

1

3

4 4 4

1
3

4

• Common Responsive Design Strategies:
• Horizontal and Vertical switching
• Collapsing and expansion
• Encapsulation
• Padding reduction
• Pillarboxing (aka Max layout width)

2
2

(A secondary high-fidelity 
mockup can be created as 
well. But usually it will not 

be necessary.)



Other benefits of wireframe mockups

• Wireframe mockups are useful when a screen is used in many different 

contexts with various different configurations

• Wireframe mockups are robust to specific design adjustments and 

application wide changes

• Wireframe mockups are much more appropriate to refer to when writing 

official requirements for an application

• Wireframe mockups make it easier for general testing to focus only on the 

most important aspects of a design and not get bogged down in the 

details.

11



Example Layout Specifications:

Content Primary Layout Secondary Layout

1. Logo
• Logo Image

2. Navigation Menu
• Option Buttons/Texts (primary)
• Menu Icon (secondary)

3. Main Content
• Title Text
• Subtitle Text
• Body Text
• Image

4. Secondary Content
• Button/Image
• Caption Text

1. Logo
• Left anchored
• Width = 100px

2. Navigation Menu
• Right anchored
• Width = fit all options
• Horizontal layout

3. Main Content
• Width = 100%

4. Secondary Content
• Width = 1/options each
• Horizontal layout

1. Logo
• Left anchored
• Width = 100px

2. Navigation Menu
• Right anchored
• Width = 40px

3. Main Content
• Width = 100%

4. Secondary Content
• Width = 100%
• Vertical layout

12

• Layout specifications do not have to be explicitly written up by designers. They can simply be inferred using the mockup as a reference
• A designer can correct these inferences if necessary

• Defining universal rules in a separate style guide, rather than 
repeating them across different screen layout specifications, 
allows for these specifications to be short and to-the-point

• Example style guide rules:
• "The main content of all screens should have:"

• "at least 80px of padding"
• "a max width of 2000px"

1

3

4 4 4

1
3

4

2
2



Step 3: BreakpointsHow to create a responsive mockup?

• After designing a primary and secondary 
layout, define breakpoints that will cause 
shifts from one layout to another

• (Good) Define one universal explicit 
breakpoint

• e.g. if the screen width is smaller than 1000 pixels, 
switch from horizontal to vertical layout

• (Better) Define several explicit breakpoints 
for various screen elements

• e.g. if the menu width is smaller than 400 pixels, 
collapse the menu

• (Best) Define automatic breakpoints for 
various screen elements

• e.g. if there isn't enough space to display the 
menu options horizontally, collapse the menu

3



Building Responsively How to build responsive 
layouts in unity

1
4



Unity Layout
How to define layouts in unity



Basic Layout:
Anchoring

16

https://docs.unity3d.com/Manual/UIBasicLayout.html

https://docs.unity3d.com/Manual/UIBasicLayout.html


Auto Layout: 
Layout Groups

17

https://docs.unity3d.com/Manual/UIAutoLayout.html

1 2 3 4

HORIZONTAL LAYOUT GROUP

VERTICAL LAYOUT GROUP

1

2

3

4

1 2

3 4

GRID LAYOUT GROUP

https://docs.unity3d.com/Manual/UIAutoLayout.html


Auto Layout: 
Responsive & 

Adaptive Layout
Groups

18

1 2 3 4

RESPONSIVE LIST LAYOUT GROUP
(HORIZONTAL)

RESPONSIVE LIST LAYOUT GROUP
(VERTICAL)

1

2

3

4

1 2

3 4

RESONSIVE GRID 
LAYOUT GROUP

•Common Responsive Design Strategies:
•(Responsive) Horizontal and Vertical switching
•(Responsive) Encapsulation
•(Adaptive) Collapsing and expansion
•(Adaptive) Padding reduction
•Pillarboxing (aka Max layout width)



Multi-Platform 
Control Schemes & 

Navigation Strategies

How to build layouts and 
design control schemes 
that work well on 
different platforms

1
9



Unity UI Elements
How to define interactable elements in unity



UI Element Types

• Visual
• Text
• Image

• Interactable
• Button
• Toggle
• Toggle Group
• Slider
• Dropdown
• Input Field
• Scroll Rect
• Scroll Bars

21



Unity Navigation
How to define navigation in unity



Navigation Controls

Mouse Touch Remote / Controller

Click Y Y Y

Hover Y N Y (Hover = Selection)

Context-click Y N N

Drag/Drop Y Y N

Scroll wheel Y N N

Multi-touch gestures N Y N

23



Navigation Strategies

• Mouse
• Most control options, so easiest to design for
• If the application will be ported to other systems, consider how to adapt to limited control options.

• Touch
• No easy access to contextual popups or menus triggered by hovers or context-clicks. So contextual info 

or actions will have to be remapped to different touch gestures or delivered in a different way
• e.g. long press for hover, double tap for context-click, etc

• Can leverage single and multi touch gestures to make certain actions easier or feel more natural
• e.g. Swipe up/down to scroll, Swipe left/right to delete, Pinch to zoom, Spin to rotate, etc

• Remote/controller
• Minimize the amount of remote/controller button presses and movement as much as possible
• The path from one button to another is usually defined using automatic pathing algorithms, so buttons 

should be organized and placed logically on screen to minimize the amount of selectables between 
elements that are commonly selected one after another

• (Start building for most constrained controls -> then build for least constrained controls)

24



Scroll Navigation

• Scroll modes:
• Reveal
• Align (Top), Align (Middle), Align (Bottom), Align (Left), Align (Center), Align (Right)

• Scroll Limits:
• Unrestricted, Elastic, Clamped

• Scroll Indication:
• Scroll bars (interactable scrollbars not recommended for remote or touch control schemes)
• Scroll direction buttons
• Scroll alignment

• Scroll controllers:
• Dragging
• Scroll wheel
• Remote directional buttons
• Scroll buttons

25


